Semantic text mining support for lignocellulose research

نویسندگان

  • Marie-Jean Meurs
  • Caitlin Murphy
  • Ingo Morgenstern
  • Gregory Butler
  • Justin Powlowski
  • Adrian Tsang
  • René Witte
چکیده

BACKGROUND Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the research and development of biomass-derived products and fuels. One approach to meeting this challenge is to mine the rapidly-expanding repertoire of microbial genomes for enzymes with the appropriate catalytic properties. RESULTS Semantic technologies, including natural language processing, ontologies, semantic Web services and Web-based collaboration tools, promise to support users in handling complex data, thereby facilitating knowledge-intensive tasks. An ongoing challenge is to select the appropriate technologies and combine them in a coherent system that brings measurable improvements to the users. We present our ongoing development of a semantic infrastructure in support of genomics-based lignocellulose research. Part of this effort is the automated curation of knowledge from information on fungal enzymes that is available in the literature and genome resources. CONCLUSIONS Working closely with fungal biology researchers who manually curate the existing literature, we developed ontological natural language processing pipelines integrated in a Web-based interface to assist them in two main tasks: mining the literature for relevant knowledge, and at the same time providing rich and semantically linked information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Research on Semantic Text Mining Based on Domain Ontology

Text mining is an effective means of detecting potentially useful knowledge from large text documents. However conventional text mining technology cannot achieve high accuracy, because it cannot effectively make use of the semantic information of the text. Ontology provides theoretical basis and technical support for semantic information representation and organization. This paper improves the ...

متن کامل

Biomedical Text Mining: State-of-the-Art, Open Problems and Future Challenges

Text is a very important type of data within the biomedical domain. For example, patient records contain large amounts of text which has been entered in a non-standardized format, consequently posing a lot of challenges to processing of such data. For the clinical doctor the written text in the medical findings is still the basis for decision making – neither images nor multimedia data. However...

متن کامل

A Semantic Method to Information Extraction for Decision Support Systems

In this paper, we describe a novel schema for a more semantic text mining process which results in more comprehensive decision making activity by decision support systems via providing more effective and accurate textual information. The utility of two semantic lexical resources; FrameNet and WordNet, in extracting required text snippets from unstructured free texts yields a better and more acc...

متن کامل

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support

Enzymes active on components of lignocellulosic biomass are used for industrial applications ranging from food processing to biofuels production. These include a diverse array of glycoside hydrolases, carbohydrate esterases, polysaccharide lyases and oxidoreductases. Fungi are prolific producers of these enzymes, spurring fungal genome sequencing efforts to identify and catalogue the genes that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012